The generator matrix

 1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  0  1  1  1  1  1  1  X  1  1  1  1  X  1  1  1  X  1  3  1  1  1  1  1  1  1  1  1  1  1  1  1  1  6  X  1  1  1  1
 0  X  0  0  0 2X X+3 2X+3  X 2X+3  3  X 2X X+3 2X+3 X+3  0  6 X+6 X+3  0  X 2X 2X  3 2X+6 2X+3  3  3  X 2X X+3  0 X+3 2X+3 2X  X  X  3  3 X+3 X+3  0 2X+6 2X  3  3 2X  3  X  X  6 2X+3 X+6 2X 2X+6 X+3  3  6  X X+3  6 X+3  0 2X+3  3 X+3  6 2X+3  X  6  3  X X+3 2X+6  0  0  X 2X+6  0  X  X  6 2X 2X+6 2X+3 2X+3  X X+3  0  3 2X+6  X 2X+3 2X 2X  0  3
 0  0  X  0  6  3  6  3  0  0 2X  X 2X+6 2X+6 X+3 2X+6 X+3 X+3 2X  X 2X+6 X+3 X+3 2X+3 2X+3 2X+3  X  3 X+3 X+6 2X+6 X+3 2X  6  6  X  6  X  0 X+6 2X 2X+3 2X+3  6 2X+6  6 2X+6 X+6 2X 2X  X  X  X 2X+6  0 2X 2X+6 X+3  6 2X  X X+3 X+3  0  6 X+6 2X+6 2X X+3  0 X+6 X+3  X  0  6 2X 2X 2X+3  X X+6 2X  6  3  0  X  6 2X 2X  3 2X+3  3  0  3 2X+6  0 X+6 X+3 2X
 0  0  0  X 2X+3  0 2X X+6  X 2X  6  3  0  3  6  X X+6 2X 2X+3 2X+3 X+6 X+6 2X 2X+6 2X+3 X+6 X+3 2X+6 X+3  0 2X 2X+6  X  X 2X 2X+6  6 X+6  X  3 X+3  0  3  6  X 2X+3 2X+6 X+3  X  X  6 2X+6  0  0 X+3  6 2X X+6  0  3 2X  3 X+3  6  X 2X+3 2X 2X+6 2X 2X  6  0 2X  6 2X 2X  0 X+3  X  X X+3  3  X X+6  0  3  X 2X+3 2X+6  0 X+6 2X+6  X  X  6  0  3 2X+6

generates a code of length 98 over Z9[X]/(X^2+3,3X) who�s minimum homogenous weight is 185.

Homogenous weight enumerator: w(x)=1x^0+204x^185+224x^186+192x^187+540x^188+390x^189+420x^190+774x^191+704x^192+1026x^193+2178x^194+1592x^195+2664x^196+3522x^197+1546x^198+1152x^199+846x^200+202x^201+114x^202+216x^203+128x^204+102x^205+186x^206+124x^207+78x^208+126x^209+142x^210+66x^211+78x^212+18x^213+12x^214+36x^215+18x^216+6x^217+36x^218+12x^219+6x^221+2x^273

The gray image is a code over GF(3) with n=882, k=9 and d=555.
This code was found by Heurico 1.16 in 3.48 seconds.